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What follows is a book review, in a somewhat unconventional
format. The book under consideration is about the foundations
of statistical inference, and it may not be clear to many human
genetics researchers that they should care about such matters.
We think that they should, and this essay is our attempt to
explain why. For those who find our comments intriguing or
for those with an existing interest in this area, Richard Royall’s
new book Statistical Evidence: A Likelibood Paradigm will be
worthwhile reading.

Trouble in Paradise

Research into the genetic basis of human diseases takes place
at the intersection of three distinct fields: medicine, molecular
biology, and statistics. Although most human geneticists are
conversant in all three areas, specialists from each discipline
nevertheless depend, for complementary expertise, on their col-
leagues from the others. It may not come as a welcome surprise
to many clinicians and molecular geneticists, therefore, to learn
that all is not well in the house of statistics: there exist deep
philosophical divisions within the field, and, perhaps surpris-
ingly, this has direct bearing on the conduct of human genetic
studies.

As an illustration, consider the recent debate over genome-
wide significance levels in the human genetics literature: Is it
more appropriate to report P values adjusted for the number
of tests that would be carried out in the course of a complete
genomic screen (regardless of whether an entire screen is ac-
tually performed) or simply to indicate the pointwise signifi-
cance level for any tests actually performed (which allows the
interested reader to correct for the number of tests actually
performed)? On the one hand, it is argued that, if investigators
fail to obtain statistical significance early on in a study, they
almost invariably will proceed to continue screening the entire
genome until a finding is obtained. Then failure to adjust for
genomewide significance levels unfairly penalizes those inves-
tigators whose findings happen, by chance alone, to come late
in their studies (Lander and Kruglyak 1995, 1996). On the
other hand, it is argued that the investigator who in fact con-
ducts only a limited number of tests is unfairly penalized if
she is then made to “correct” for arbitrarily many tests that
she could have but did not perform (Witte et al. 1996; also
see Thomson 1994; Curtis 1996). Both sides seem to have valid

points, and clinical investigators may be disturbed by the ap-
pearance of a dilemma having no clear resolution.

But there is a school of statistical thought that makes it
unnecessary to choose between these equally unsatisfactory
options. According to this school, if what we are really inter-
ested in is gauging the evidence for (or against) linkage, then
the P value is not the proper measure to begin with, and the
debate over multiple-testing adjustments to the observed P
value becomes irrelevant. For those who are troubled by the
multiple-testing dilemma, this school of thought provides an
appealing alternative. In fact, this school of thought raises
serious questions about some practices that may nof be trou-
bling clinical investigators but that perhaps should be—for
example, the use of “model-free” tests in linkage studies.

An Extravagant Claim

In Statistical Evidence, Royall, a professor of biostatistics at
Johns Hopkins University, offers a cogent and compelling de-
fense of this other school of thought. The “likelihood para-
digm” of Royall’s subtitle will be familiar to those geneticists
already acquainted with the earlier work of Edwards (1972).
Since no general term exists for proponents of this school, we
take the liberty of dubbing them “statistical evidentialists,”
and we will call the methods that they advocate “evidential-
ism.” By contrast, the two other prominent schools are often
referred to as “frequentists,” on the one hand, and as “Bayes-
ians,” on the other.

Most of current statistical practice is based on frequentist
principles—notably, on the Neyman-Pearson paradigm for hy-
pothesis testing or on Fisher’s conception of significance test-
ing. Evidentialism is undoubtedly the least familiar school of
statistical thought, both within the field of statistics itself and,
certainly, among consumers of the statistical literature. This
remains true, at least in part, because journal editors and peer
reviewers almost invariably ask that statistical results be re-
ported in familiar frequentist terms. But our predilection for
the familiar notwithstanding, evidentialism is, arguably, the
only body of statistical theory that is fully consistent with the
practice of science.

The Problem with P Values

To justify this extravagant claim, we need to consider the
purpose of statistical analysis in scientific contexts. Eviden-
tialism views the purpose of statistical inference as the mea-
surement of the strength of evidence conferred by a given set
of data in favor of one hypothesis over another. This may seem
a wholly natural objective for scientific data analysis, and we
will take it as given that this is the objective that we are pur-
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suing. But, in fact, much of standard statistical practice is based
on a quite different conception of statistical inference—namely,
as a set of tools for decision making in the face of uncertainty.
This latter objective need not in any way involve the concept
of evidence.

For example, the familiar (Neyman-Pearson) paradigm
taught in all introductory statistics courses proceeds, in broad
strokes, as follows: We begin with a “null” hypothesis and
select an acceptable level of significance, which is the proba-
bility that we will reject the null hypothesis when it is in fact
true (the type I error rate). We then select the “best” testing
procedure, one that minimizes the probability that we will fail
to reject the null hypothesis when it is in fact false (the type
II error rate) for the selected significance level. Then we per-
form the test, reporting as results the type I error rate, the type
II error rate, and our decision either to reject the null hypoth-
esis at the chosen significance level or not to reject it. This
overview of statistical inference may be so familiar as to also
seem wholly natural. But nowhere does this account mention
the measurement of evidence. Are the two error rates of Ney-
man-Pearson tests related to statistical evidence in some way?

The type I and type II error rates of a Neyman-Pearson test
represent the frequencies with which certain events (the two
types of error) will occur over repeated applications of the
decision-making procedure—that is, they reflect our prediction
of how the test procedure will behave, in general, prior to the
collection of any data. But, once we have the data in hand,
we are really more interested in how the test procedure hap-
pened to have performed in this particular application, which
is quite another matter. To draw a loose analogy: prior to
leaving my house in the morning, I might listen to the weather
forecast before deciding whether to carry my umbrella; but,
once I have left the house and find myself in a downpour, the
fact that rain was predicted to be only moderately likely does
not mitigate my regret at having left the umbrella at home.
Similarly, once we have data in hand, we are no longer satisfied
with reporting the probability that a certain erroneous out-
come might occur when we perform a test of this sort. Rather,
we would like to have some way to determine whether we
have been misled in this instance. The predetermined signifi-
cance level of a Neyman-Pearson test does not give us this
information.

For this reason, in the scientific literature we hardly ever
conform to the strict Neyman-Pearson paradigm in the re-
porting of statistical results. Rather, what we often see reported
is the “empirical” P value of the test—that is, the type I-error
probability corresponding to the observed value of the test
statistic—rather than the simple decision to reject (or not to
reject) the null hypothesis made at a predetermined level of
significance. This empirical P value is then commonly inter-
preted as if it were a measure of the strength of the evidence,
with smaller P values interpreted as reflecting greater evidence
against the null hypothesis. The practice of reporting empirical
P values reflects the fact that our objective is the measurement
of evidence, rather than decision making per se. But, at the
same time, using the empirical P value in this way is an attempt
to address this evidentialist objective within the familiar fre-
quentist decision-theoretic (hypothesis-testing) framework.
This practice reflects our interest in evidence, while restricting
our statistical focus to the predictive error rates of hypothesis-
testing procedures.
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But can the P value be made to do double duty, both as the
predictive type I-error probability and as a measure of the
strength of the evidence? What is the relationship between the
question of statistical evidence and the frequentist’s interest in
error rates? Are these really just two ways of naming the same
statistical quantities, or are these fundamentally different kinds
of quantities? And, if the P value is not the appropriate measure
of the strength of evidence, then what is? Although these ques-
tions might seem too philosophical to require the attention of
genetics researchers, the methods that we choose for analysis
of genetic data ought perhaps to depend on the answers that
we give. The evidentialist’s answers begin with the recognition
that the familiar frequentist methods cannot be made to satisfy
our interest in the measurement of evidence.

What Else Is There?

If we are to forgo the familiar frequentist methods, what
alternatives do we have? Evidentialism offers an alternative
paradigm that is expressly designed to address the problem of
how best to measure statistical evidence. The cornerstone of
this alternative paradigm is a definition of statistical evidence
that is based solely on the likelihood ratio (LR). Royall puts
this in terms of Hacking’s (1965) “law of likelihood”: “If
hypothesis A implies that the probability that a random var-
iable X takes the value x is p,(x), while hypothesis B implies
that the probability is py(x), then the observation X=x is ev-
idence supporting A over B if and only if p,(x) > py(x), and
the likelihood ratio, pA(x)/py(x), measures the strength of that
evidence” (p. 3).

As Royall says, the law of likelihood defines statistical ev-
idence in a way that seems both “objective and fair,” since it
says, in essence, that “the hypothesis that assigned the greater
probability to the observation did a better job of predicting
what actually happened, so it is better supported by that ob-
servation. If the likelihood ratio, p,(x)/pg(x), is very large, then
hypothesis A did a much better job than B of predicting which
value X would take, and the observation X = x is very strong
evidence for A versus B” (p. 5). This outlook does indeed seem
sensible. The surprising thing is just how easily this law may
be violated when we attempt to use the P value as a measure
of evidence.

To illustrate this point, suppose that we are interested in
establishing whether a given coin is “fair.” In particular, to
keep things simple, suppose that we are interested in deter-
mining whether the coin is truly disposed to land heads with
probability p, =  or probability p, = . One experiment that
we might perform would be to toss the coin a fixed number
of times, N, and to record the number of times, H, that the
coin lands heads. In this experiment, as is well known, the
random variable H has a binomial probability distribution.
Another experiment that we might perform would be to toss
the coin repeatedly until the first time that it lands heads,
recording the number, M, of tosses required. In this case, the
random variable M has a geometric probability distribution.
Both experiments yield information about the true underlying
probability p that the coin will land heads.

Note that in this example we are explicitly concerned with
comparing two hypotheses, p, = 3 and p, = 5. Some statisti-
cians might prefer to talk about testing a “null” hypothesis
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without reference to an alternative hypothesis. As we have
already seen, however, the law of likelihood expressly applies
to comparisons between two hypotheses: evidence counts
against one hypothesis only insofar as it favors the other. This
insistence that any proper measure of evidence must involve
two hypotheses rather than one is a cornerstone of evidentialist
theory. In the interest of space we forgo further discussion of
this point here, but, for detailed consideration of the problems
inherent in the attempt to ignore the alternative hypothesis,
we suggest that the interested reader see Royall (1997, esp.
chaps. 1 and 3) and others (e.g., Birnbaum 1962; Edwards
1972).

Suppose that, having conducted our experiment, we observe
that the coin lands heads only once, on the last of seven tosses,
so that H=1 or M = 7, depending on which design we have
chosen to use. Under the binomial probability distribution, the
probability of this observation is 7p(1 — p)°, so that the LR
p.(H)/p,(H) becomes 7 () (1 — 1)¢/7(3)(1 — 1) = 5.7, favor-
ing the hypothesis p, = § by an LR of 5.7:1. Under the geo-
metric distribution, this same observation has probability
(1—p)°p, so that the LR p,(H)/p,(H) becomes (1—
D3 /(1= 3)¢(3) = 5.7, again favoring the hypothesis p, =
4 by an LR of 5.7:1. The law of likelihood tells us that the
strength of the evidence in favor of the hypothesis p, = + is
exactly the same, once we have made our observation of one
“head” in seven tosses, for, regardless of which of the two
experiments we have performed, the LR is 5.7:1. Differences
between the binomial and geometric probability distributions
may influence our choice of experimental design prior to data
collection, because the planning of statistical experiments in-
volves the prediction of their performance across repeated en-
actments. But, once we have made our observation and turn
our attention to the matter of what happened in this particular
instance, it makes no difference which of the experiments we
have chosen. The evidence conveyed by the data is invariant
across the two experimental designs.

The P value does not share this invariance property. For
example, if we carry out a standard one-sided test of the null
hypothesis p, = 1 (against the alternative, p < 1), we find that
the binomial experiment yields a P value of .06, whereas the
geometric experiment yields a P value of .02. The LRs are the
same under both experimental scenarios, yet the P values of
the two tests of hypothesis differ. Thus, when we use the P
value as a measure of evidence, we may very well end up
violating the law of likelibood. It is also of interest that, if we
performed the test of hypothesis at a predetermined signifi-
cance level of o = .05, we would not reject the null hypothesis
in the first case, but we would in the second case, even though
the LRs are exactly the same in each case.

The reason that the P values differ in the two cases is that
the hypothesis-testing procedure is based on the probability
distribution of the test statistic: that is, it takes into account
not only the observed outcome H = 1 (or M = 7) but also the
form and contents of the sample space for all other possible
observations that the experiment might have produced but did
not ( H=0, H=2, ..., H=7, under the binomial design;
or M=1, M=2, ..., under the geometric design). The P
values differ because the probability distribution of all the
outcomes that did not occur differs between the two experi-
ments. (For example, in the binomial case, there are eight pos-
sible outcomes, seven of which did not occur; but, in the geo-
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metric case, there are infinitely many possible outcomes that
did not occur.) By contrast, the law of likelihood is sometimes
said to imply the “irrelevance of the sample space,” since no
use is made of the probabilities of observations that could have
occurred but did not. The law of likelihood dictates that, once
an observation has been made, the strength of evidence de-
pends solely on the observed data.

Is the “Irrelevance of the Sample Space” a Good Thing?

The law of likelihood entails the irrelevance of the sample
space to evaluation of the strength of evidence conveyed by a
given set of data, but is this desirable? Let us turn the question
around: Why would we want the observation of one “head”
in seven tosses to contribute a different quantity of evidence
concerning the probability that the coin lands heads, depend-
ing on the investigator’s intentions with respect to the length
of the experiment? Suppose that the choice of experimental
design—binomial versus geometric—had been determined by
the roll of a die. For example, suppose that it had been decided
beforehand that, if the die showed an even number, we would
use the binomial design but that, if it showed an odd number,
we would use the geometric design. Would we consider the
behavior of the die as relevant evidence regarding the propen-
sity of the coin? Surely not, and, appropriately, the probability
of the observed number of dots on the die would cancel out
of the LR, leaving unaffected the measure of evidence regarding
the coin.

As a technical aside, we note that many frequentists, too,
will agree that the behavior of the die ought to be irrelevant
to the outcome of a test that purports to measure the propen-
sities of the coin; in our simple example, conditioning the test
of hypothesis on the “ancillary” outcome of the roll of the die
can be used to ensure this result (Stuart and Ord 1991, sec.
31.4-31.20). But this technique is of questionable utility to
much of applied statistics, and, in any event, the P value re-
mains a function of a sample space, one that is defined by a
single probability distribution (the “null” distribution), rather
than by an LR, and it is therefore in violation of the law of
likelihood. Thus the fundamental point of the example remains
the same, even if, in some cases, the frequentist can rig a suit-
able degree of invariance for the P value (for further discussion,
see, in addition to Royall, Birnbaum 1962; Edwards 1972).

When It comes to LRs, How Big Is Big Enough?

To return to our coin-tossing example, suppose now that
we agree to use the LR as our measure of the strength of the
evidence. Then we will certainly want to know how it is cal-
ibrated. How do we decide whether an LR of 5.7:1 is “strong”
evidence in favor of p, = & versus p, = 3 ? Royall offers a “ca-
nonical experiment” to assist us here. Suppose that we are
confronted with two urns, one containing all white balls and
the other containing half white balls and half black balls. One
of the urns is selected at random, and we randomly select (with
replacement) balls from that urn. Now suppose that we ob-
serve only white balls. We can calculate the LR favoring the
hypothesis that the selected urn has 100% white balls (i.e.,
H,: p = 1, where p represents the probability of a white ball),
versus the hypothesis that it has only 50% white balls (H,:
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p = 3), associated with any run of # consecutive white balls.
Specifically, if we draw b white balls, then the LR is 2 in favor
of the hypothesis that the urn contains all white balls. Thus,
if we see three white balls in a row, the LR is 8; by the time
that we draw 5 white balls in a row, the LR is 32; etc. Using
this model as a metric, we see that the LR of 5.7:1 that we
obtained in our example corresponds to drawing 2 or 3 con-
secutive white balls in Royall’s canonical urn experiment.

Probably most of us would consider this to be relatively
weak evidence regarding which urn has been selected. Ac-
cordingly, Royall suggests that we might also want to consider
an LR of 5.7:1 to be relatively weak evidence in favor of
p, = % in the coin-tossing example that we have given above,
since it corresponds to the amount of evidence yielded by a
consecutive run of only 2 or 3 white balls in this urn exper-
iment. Note, however, that, had we conducted a geometric
experiment and performed the classical Neyman-Pearson test
at the .05 significance level, we would have succeeded in re-
jecting the null hypothesis p, = 3. This illustrates a second
important but insufficiently appreciated point regarding the
use of P values as measures of evidence: it is possible to reject
a hypothesis in the frequentist framework, or to obtain em-
pirical P values falling below our significance threshold, when
the actual strength of evidence, as measured by the LR, is not
strong at all.

Evidentialism in a Nutshell

Our simple coin-tossing example illustrates the evidential-
ist’s answers to the questions with which we began this essay,
as follows: Error rates of tests and measures of evidence are
two different matters. The P value is a legitimate predictive
error rate for a statistical decision-making procedure, but, as
a measure of evidence, it has several undesirable properties.
Chief among these is its dependence on the sample space, which
is important in the planning stage prior to data collection but
which should become irrelevant to the measurement of evi-
dence once the data have been collected. The LR, in contrast,
provides a sensible and straightforward measure of evidence,
and, once we adopt the LR as our standard, we see that reliance
on the P value may lead us to reject the null hypothesis when
the evidence against it is weak, to fail to reject the null hy-
pothesis when the evidence is actually strong, or, on the basis
of wholly tangential differences in experimental design, to re-
ject the null hypothesis in one case while failing to reject it in
another. The evidentialist’s position is, in short, that the P value
is not a suitable choice for a measure of evidence—and that
the LR is.

Evidentialism Meets Genetics. I. The Problem of Multiple
Testing

Returning now to the debate over genomewide versus point-
wise significance levels, we can see the form of the eviden-
tialist’s solution: if we agree that the P value, which was not
invented as a measure of evidence, should not be so interpreted
in scientific practice, then it follows that the “irrelevance of
the sample space” renders the entire debate moot. The evi-
dentialist views the LR in favor of (or against) linkage to any
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one point in the genome as the only proper measure of evi-
dence, and this means that extraneous factors that do not affect
the LR, such as the number of additional loci being tested,
have no bearing on the strength of the evidence. Thus the
evidentialist will say that the appearance of an unresolvable
dilemma comes from treating the P value as if it were a valid
measure of evidence—and that the solution is simply to rec-
ognize that it is not. We note that Witte et al. (1996), in their
discussion of this matter, allude to the evidentialist’s solution
and also raise a related problem, which we have not considered
here—namely, the unresolvable question of how sample size
affects the interpretation of the P value considered as a measure
of evidence. For an overview of the bewildering statistical lit-
erature on this point, see pages 70-71 of Royall.

The evidentialist’s attitude toward the problem of multiple
testing seems wholly appropriate to the spirit of science, for
how could it be right that those who favor efficient study
designs in which many different hypotheses are evaluated at
once should be punished with a higher burden of proof than
is required of those who examine only one hypothesis at a
time? The evidentialist’s solution avoids this inevitable yet ir-
rational implication of using P values to measure evidence, by
detaching the measurement of evidence from the often arbi-
trary determination of how many hypotheses are in fact being
tested.

Of course, abandoning the P value as a measure of evidence
also requires the researcher to forgo the opportunity to declare
“statistical significance.” But is this a problem? It has become
a commonplace to include with every report of statistically
“significant” linkage the caveat that a definitive finding re-
quires independent replication and, ultimately, the cloning and
functional characterization of the actual gene(s). Thus, when
we say we are “rejecting” the null hypothesis (no linkage), we
do not really mean that we intend henceforth to act as if the
alternative (linkage) were true; what we mean is that, on the
basis of the data at hand, we are inclined to accept the evidence
as favoring the hypothesis of linkage. This inclination can be
better expressed by use of the LR, which gives us a direct
quantitative measure of the strength of that evidence, a mea-
sure that does not depend on extraneous aspects of experi-
mental design.

Evidentialism Meets Genetics. Il. The Problem With Model-
Free Linkage Tests

Geneticists will recognize the LR in its familiar incarnation
as the LOD score, which is the logarithm of the ratio of the
likelihoods (i.e., LR) corresponding to the hypotheses of link-
age and no linkage. By contrast, the various test statistics used
by the increasingly popular “model-free” linkage tests, such
as the several varieties of affected-sib-pair test (Ott 1991) or
the NPL (Whittemore and Halpern 1994; Kruglyak et al.
1996), are not LRs. Because these statistics have probability
distributions that can be characterized under the “null” hy-
pothesis of no linkage, they are suitable for use in frequentist
tests of hypothesis, in which the result of the test procedure
is, generally speaking, calculation of a P value. (The proba-
bility distribution is necessary in order to take account of all
those observations that could have occurred but did not.)
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However, we have seen that there is reason to reject the P value
as a valid measure of evidence in favor of the LR. It follows
from this that, whatever the merits of the various model-free
statistics may be, from an evidentialist perspective they are not
suitable to the task of measuring the strength of evidence con-
veyed by our data. (Note that we are using the term “LOD
score” very loosely here, without committing ourselves to a
particular form for the constituent likelihoods: for example,
the likelihood may be written under the assumption of ho-
mogeneity or by allowing for heterogeneity via an admixture
parameter [Smith 1963]; it may be parameterized in terms of
the usual penetrance matrices or via the recurrence risks to
relatives [Risch 1990] or in terms of allelic risks [Camp 1997],
etc. Thus, when we refer to a LOD score, we are really referring
to a class of LR statistics. Which form of the likelihood func-
tion is optimal in any given situation is an important ongoing
area of investigation. We also note that Whittemore [1996]
has shown that the familiar model-free linkage statistics can
be derived from the likelihood as score statistics, so that they
may all be viewed as in some sense equally likelihood based;
nonetheless, they are not LRs.)

Of course, a LOD score, too, can be—and often is—used
as the basis for a frequentist test of hypothesis. This is possible
because we can obtain a probability distribution for all pos-
sible values of the LOD score under the null hypothesis of no
linkage, either by appealing to its established asymptotic re-
lationship to the x* distribution or via simulation of its em-
pirical distribution. But, unlike the model-free statistics, be-
cause LOD scores are LRs, they also can be used in an entirely
different manner—namely, as direct measures of the strength
of evidence. The current debate over the relative merits of
“parametric” (LOD) versus model-free linkage methods has
tended to gloss over this fundamental distinction between the
two approaches: the LOD score (defined broadly, as above) is
not simply one among the many available test statistics; it may
be the only one of them that is suitable to address the question,
What is the strength of the evidence for linkage?

Failure to make a clear distinction between frequentist hy-
pothesis testing and evidentialist measurement of evidence has
given rise to a body of literature in human genetics in which
frequentist methods are freely mixed with evidentialist objec-
tives—a body of literature in which the P value is treated as
a valid answer to the evidentialist’s question and in which the
LOD score is used to address the frequentist’s concerns. The
result is that we now enjoy a canon of statistical practices for
linkage studies that draw simultaneously from logically in-
compatible first principles. The appearance of Statistical Evi-
dence on the scene at this time is therefore especially timely
for the field of human genetics. Readers intrigued by our brief
excursion into evidentialist thinking will be richly rewarded
by reading Royall’s book for themselves.

And Now to the Book ltself . . .

Royall’s book is written in such a way that it can be read
by nonstatisticians having only a basic familiarity with the
principles of statistical inference. The many useful examples
rely on simple discrete distributions, such as the canonical urn
experiment given above, and, occasionally, on the normal dis-
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tribution, which will be familiar enough to most readers. For
example, even those who are unfamiliar with the algebra of
the normal distribution will appreciate the discussion (p. 50ff.)
of how standard calculations systematically underestimate the
required sample size. The accessibility of this section may in-
deed mask the fact that it represents one of Royall’s unique
mathematical contributions to evidentialism: the quantifica-
tion of probabilities of weak or misleading evidence in strictly
evidentialist terms. (This important theme is returned to and
developed more fully in chap. 4; see esp. sec. 4.3ff.) Excellent
(although mathematically challenging) exercises are found at
the end of each chapter. Since solutions to the problems are
not included, these exercises may be of limited utility; but
solutions may become available in the future (R. Royall, per-
sonal communication).

Royall is able to draw on the work of some illustrious pred-
ecessors, including earlier books by Hacking (1965) and Ed-
wards (1972; also, for the research literature in this area, see
Royall’s excellent bibliography). Edwards’s already well-
known book on this subject presupposes more mathematical
background on the part of the reader, although its examples
are more directly aimed at geneticists. However, Edwards is
somewhat more explicit in defining the term “likelihood” itself
(Edwards 1972, pp. 9-12). Readers unaccustomed to working
with likelihoods might profit from reading pages 8-12 of Ed-
wards’ book, which offer a concise introduction to the like-
lihood and the LR (also, Ott [1991] gives an equally lucid
introduction to likelihoods). Hacking’s book is a somewhat
lesser-known precursor. Like Royall, Hacking is primarily con-
cerned with the logical and philosophical underpinnings of
evidentialism, but nonphilosophers will probably find Royall’s
treatment of the subject more accessible than Hacking’s.

Chapter 1, containing several loosely related subsections,
introduces the important themes that occupy later chapters of
the book and is vital to Royall’s line of argument. The sub-
sequent chapters each stand alone, and the reader does not
necessarily need to take them in order. Chapter 2 dissects the
Neyman-Pearson paradigm from an evidentialist perspective,
and chapter 3 takes on Fisherian versions of frequentism. Al-
though the breakdown of disparate points of view within the
frequentist school (Neyman-Pearson vs. two distinct tendencies
within the Fisherian camp) is illuminating, some connoisseurs
of Fisher’s work might dispute whether Fisher himself is wholly
Fisherian in Royall’s characterization. In particular, Royall
touches only briefly on Fisher’s rather abstract conception of
the relevant “reference set” with respect to which the P value
should be calculated (e.g., see Dawid 1991).

Chapter 4 pulls together the first three chapters, in a side-
by-side comparison of the Neyman-Pearson, Fisherian, and
likelihood (evidentialist) paradigms. Chapter 5, “Resolving the
Paradoxes from the Old Paradigms,” may be of special interest
to clinical investigators who follow with dismay the current
statistical debates for which there seems to be no possible
resolution, such as the debate over the reporting of genome-
wide versus pointwise significance levels, with which we began
this essay (and other, equally perplexing topics, such as the
question of “peeking” at preliminary data in drug studies).

Chapters 6—8 presuppose greater statistical background.
Chapter 6 uses several different data sets to illustrate purely
evidentialist data analyses, in comparison with standard fre-
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quentist analyses. The results in each case are generally in
agreement (because of the central role that the LR plays in
frequentist theory as well), but the evidentialist analyses offer
simplicity and nice graphical representations, along with the
considerable appeal of philosophical consistency. Chapter 7
covers the variety of likelihood techniques available for the
handling of nuisance parameters (marginal, conditional, esti-
mated, profile, and synthetic conditional likelihoods). Chapter
8 contains a critique of Bayesian statistics, focusing on the
inherent difficulties of relying on subjective prior probability
distributions. (There is also an Appendix offering a solution
to the Paradox of the Ravens, for afficcionados of the foun-
dations of inductive reasoning.)

One small quibble is that, although Royall appears to see
no valid basis to Bayesianism, he is not nearly so thorough in
his criticism of the Bayes approach as he is in his critique of
the frequentists. This is perhaps in part because there is greater
affinity between evidentialism and Bayesianism to begin with.
In particular, Royall’s critique focuses on the “subjectivity” of
Bayesian priors, without mention, for example, of “empirical
Bayes” approaches, in which prior densities are themselves
(partially) estimated from the data (Robbins 1956). Genetic
linkage studies appear to offer a rare opportunity to incor-
porate “objective” prior distributions into data analyses, since
a great deal is known about the behavior of the recombination
fraction across the genome (e.g., see Elston and Lange 1975;
also, for some Bayesian applications, see Smith 1959; Hauser
and Boehnke 1993). It is hard to construct a scientific rationale
for disallowing the use of these empirically based prior dis-
tributions. But, if they are allowed, does the frequentist testing
paradigm gain validity, or are there uniquely evidentialist ap-
plications of the resulting posterior probabilities—for exam-
ple, via the Bayes factor (Kass and Raftery 1995)? It would
be interesting to hear Royall’s opinion here.

In a similar vein, we would have been interested in greater
discussion of the assessment of the strength of evidence in
multivariate contexts, or in the presence of additional “degrees
of freedom.” It is well known that, all other things being equal,
the more parameters that we estimate from the data, the larger
our resulting likelihood will be. Therefore, the magnitude of
the LR is affected by the difference in the number of parameters
estimated in the numerator and denominator. In the frequentist
approach, this difference is reflected in the degrees of freedom
of the associated x* statistic for nested hypotheses (Stuart and
Ord 1991), but, in the evidentialist framework, there is no
analogous adjustment to the LR itself. Should we interpret the
strength of the evidence, as conveyed by an LR of a given
magnitude, in light of the difference in “degrees of freedom?”
Or does the law of likelihood tell us that all LRs of, say, 5.7:
1 are created equal? Royall clearly advocates this latter posi-
tion, when he points out that an LR of 4:1 represents a fourfold
increase in the prior-probability ratio, regardless of the values
of the priors and regardless of the context (p. 12). Thus it is
fairly clear that Royall would take the strength of evidence at
face value rather than attempt to make any “corrections” for
the extra parameters. This seems unobjectionable in eviden-
tialist terms, but many readers may balk at this implication of
the law of likelihood, and the book gives the issue little at-
tention. This point arises in a genetic context in the interpre-
tation of “MMLS” (Greenberg 1989) or “mod” scores (Cler-
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get-Darpoux et al. 1986), in which multiple parameters may
be estimated in the numerator of the LOD score (e.g., see
Hodge et al. 1997). The problem also arises in a slightly dif-
ferent form when we are expressly concerned with selection
of the “best” model in a segregation analysis. For instance,
some discussion of the Akaike (1973) information criterion
certainly would have been interesting. But the text is, after all,
a slim 176 pages and can hardly have been expected to cover
all possible topics at equal length.

In Conclusion, . . .

Although the likelihood paradigm has been around for some
time, Royall’s distinctive voice, combined with his contribution
of several novel lines of argument, has given new impetus to
a school of statistical thought deserving the renewed attention
of the human genetics community. For, among all the possible
purposes of statistical inference, surely the measurement of
evidence is first and foremost among our needs. Royall, already
well-known in statistical circles for his earlier work on prin-
ciples of inference and finite-population inference, has now
provided a valuable manifesto for statisticians who wish to
practice not just mathematics—but science.
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Culture, Kinship and Genes: Towards Cross-Cultural

Genetics. Edited by Angus Clarke and Evelyn Parsons.
New York: St. Martin’s Press, 1997. Pp. 272. $69.95.

This book consists of a collection of papers, from a 1994
conference in Wales, written by social scientists and health
professionals interested in the impact of genetics on different
cultural groups. A slim volume, it reads easily and is convenient
for dipping into at leisure. There are many useful references
at the end of each chapter, enabling further reading if desired.
The book introduces clinical, biological, anthropological, so-
cial, and political ideas on the issues surrounding culture and
kinship, with respect to genetics and counseling; it is the first
publication to unite such a diverse spectrum of perspectives.

The book challenges many common Western assumptions
about culture and the ethics of medical care. Unfortunately,
the messages relevant to the clinician are often accompanied
by complex—and, at times, angry—academic discussions. Cul-
ture is discussed mostly with reference to different ethnic
groups in the United Kingdom and Africa, although the debates
relevant to the United Kingdom could easily apply to any West-
ern society. There is a brief mention of cultural groups that
have formed as a result of social circumstances (e.g., people
with learning disabilities could be termed a “cultural group-
ing”), but there is no mention of other types of culture, such
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as “deaf culture” or “gay culture,” apart from one reference,
in the editor’s introduction, to deafness. One of the most
poignant themes of the book is that, because rational thought
is independent of race and class, clinicians who confront psy-
chosocial difficulties in patients from different ethnic groups
need to discount cultural stereotypes. Such clinicians need to
acquire an understanding and respect for patients from dif-
ferent cultural backgrounds; the practical result of such an
approach is that the patients’ problems are not automatically
assumed to be related to their culture.

The book opens with an insight into the different types of
kinship patterns used by ethnic groups in the United Kingdom
today (the European “egocentric” kinship and the Mediter-
ranean, patrilineal, and Afro-Caribbean kinships), providing
a sound basis for subsequent chapters. The discussion then
turns to the various definitions of terms such as “culture,”
“ethnicity,” “race,” “society,” and “relatedness.” As author
Helen Macbeth contends, “it is ironic that this discipline [an-
thropology] is centrally concerned with something that it fails
to define adequately” (p. 54). Although these semantic issues
are never settled, many other themes emerge as the debate
continues throughout the rest of the book.

Many authors show that, although consanguinity is often
blamed for disease, the networks that develop within consan-
guineous families can be useful for genetic counselors. There
is practical information on how services for consanguineous
families can be set up for the benefit of patients. Authors Sue
Proctor and Tain Smith demonstrate that, despite the effect of
consanguinity on increasing the risk of certain genetic condi-
tions, it was not the main factor associated with adverse birth
outcome for babies from 1,500 consanguineous Pakistani par-
ents in Bradford, U.K. Other, more prominent factors included
the mother being unable to speak English and subsequently
not being directly involved in antenatal care, a problem that
could be avoided if more health professionals spoke Asian
languages and were better attuned to Asian culture. This ex-
ample is representative of many other circumstances where the
quality of care could be improved by improving cultural
awareness within the medical community.

This book gives a fascinating account of how culture influ-
ences the perception of genetic disorders in the black popu-
lation of southern Africa. Authors Jennifer Kromberg and Tre-
for Jenkins identify interesting cultural phenomena, such as
belief in fate, which leads to the view that, if a child with a
genetic condition is to be born, the situation cannot be altered,
even by accepting prenatal diagnosis and selectively terminat-
ing the pregnancy. The authors also suggest that, when mothers
want to learn why their child is disabled, they will consult the
traditional healer rather than the Western clinician. Another
point, related to language, is that there are no words for “gene”
or “chromosome” in local Bantu languages. This issue also
arises in genetic counseling for deafness, in which the same
sign-language term for “genetics” is sometimes wrongly used
also to describe “gene,” “chromosome,” and “DNA.”

Practical issues for pedigree taking within Africa are high-
lighted, such as the problems encountered when the names of
relationships in families are unexpected; for instance, the cli-
ent’s mother’s older sister may be called the client’s older
mother, instead of aunt, or her younger sister may be called a
younger mother. This particular situation also can be found
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